
Exercise 10  

DETERMINATION OF THE VISCOSIMETRIC AVERAGE MOLAR MASS OF POLYMERS  

 

(UWAGA! Zostawiłam numerację wzorów taką jak w oryginalnym ćwiczeniu dla ułatwienia 

sprawdzania merytorycznej poprawności! Po zatwierdzeniu takiej wersji opisu pozmieniam 

numerowanie wzorów) 

 

Issues: internal friction, viscosity, viscosity measurement methods with particular emphasis on the 

capillary method, physicochemical properties of polymer solutions (conformation of 

macromolecules in solution, diffusion in solutions of macromolecules, viscosity of macromolecular 

solutions, dependence of the limit viscosity number on the molar mass of the polymer). Fluid 

viscosity  is defined as the proportionality coefficient in Newton's equation: 

𝐹 = η𝐴
𝑑𝑣

𝑑𝑥
 

 

Where F is the force applied to surface A parallel to the direction of flow needed to give the fluid a 

dv/dx velocity gradient. The gradient is set perpendicular to the flow direction. Viscosity is 

characteristic of a given fluid and, as Newton's equation assumes, does not depend on the velocity 

gradient.  

Here, we will limit ourselves to laminar flow in a liquid. Newton's assumption is satisfied in principle 

by all real solutions and by some dispersion systems. Such systems are called Newtonian fluids. The 

others (non-Newtonian fluids) include, among others, some sols and solutions of macromolecules. 

Although the solutions of macromolecules are real solutions, they are sometimes classified as 

microdispersion systems - colloidal systems due to the fact that the sizes of polymer coils in the 

solution fall within the limits set by the definition of colloidal systems. The introduction of particles 

with dimensions larger than its particles into the liquid causes a partial inhibition of mutual sliding of 

the liquid layers (Fig. 1), and consequently an increase in the viscosity of the system. 

 

 

Fig. 1. Influence of the presence of rigid particles on the fluid velocity gradient. (a) flow in pure 

solvent, (b) flow in the presence of large particles.  

 

The viscosity of a dilute solution of rigid particles is given by Einstein's equation: 



η = η0(1 + Φ′φ)     (1) 

 

where 0 – viscosity of the solvent,  – viscosity of the solution,  – volume fraction of particles (the 

ratio of the sum of their volumes to the volume of the solution),  – coefficient depending on the 

shape of the particles equal to 2.5 for spherical particles. Equation (1) can be easily transformed 

into: 

 

Φ′φ =  
η−η0

η0
     (2) 

 

For a monodisperse system (expressing the concentration of particles as the ratio of their mass to 

the volume of the system, i.e. p = Nmc /Vu , where N – number of particles, mc – particle mass, Vu – 

volume of the system) from equation (1) one obtains: 

 

 
η−η0

η0 ρ𝑝
=

Φ′𝑉𝑐

𝑚𝑐
        (3) 

 

where Vc is the volume of the particle. Equation (3) describes the viscosity of a dispersion system 

containing rigid particles. If the system under consideration is a polymer solution, then the mass of a 

single particle (mc ) is equal to the mass of one particle, and the product of this mass and the 

Avogadro numer NA gives the molar mass M of the polymer, so: 

 

𝜂−𝜂0

𝜂0 𝜌𝑝
=

Φ′′𝑉𝑐

𝑀
        (4) 

 

where  = NA. 

Equation (− 0 )/0p is commonly called the viscosity number. As can be seen from equation (4), it 

could be used to determine the molar mass of the polymer, if its solution could be treated as a 

dispersion of rigid, uniform bodies. The conformation of macromolecules in solutions, however, is 

generally too complicated to apply the simple assumption of rigid bodies. For the sake of simplicity, 

considering linear polymers (composed of molecules without branches, not cross-linked) that do not 

tend to adopt specific structures (such as protein molecules), one can assume that the structure of a 

macromolecule in solution resembles a disordered, tangled bundle. This ball is to some extent 

penetrated by solvent molecules and is in constant motion consisting in the constant change of its 

conformation. In addition, the coil also performs disordered translational and rotational movements 

in the solution. Therefore, there is always a certain probability that two or more polymer coils may 

penetrate each other. In this situation, the measure of the "undisturbed" size of the ball will not be 

the viscosity number, but its value extrapolated to the polymer concentration equal to 0 (i.e. a highly 

diluted solution), called the limiting viscosity number [η]: 

 



[η] = lim
ρ𝑝→0

η−η0

η0ρ𝑝
        (5) 

 

Euation (4) should be writen: 

 

[η] =
Φ′′𝑉𝑐

𝑀
        (6) 

 

The shape of the polymer coil in the solution is the result of the possibility of rotation of successive 

segments around single intersegment bonds. Due to the need to maintain the angles between these 

bonds, the position of two successive segments of the polymer is strongly interdependent. This 

condition weakens with increasing distance between the positions of the considered segments in the 

polymer chain. The position of two distant segments depends almost only on the length of the chain 

connecting them. Bearing in mind that the segments make constant movements, one may ask 

whether there is a way to determine the average density of the segments around the center of 

gravity of the polymer coil. If the change in the energy of interactions between the solvent 

molecules and their surroundings during the transition from a pure solvent to a polymer solution is 

compensated by an appropriate increase in the entropy of the system (the free enthalpy of mixing 

the solvent with the polymer is equal to zero), then the polymer segments will be surrounded by 

both other segments and and solvent particles. A solvent selected in such a way that the above 

condition is met is called a theta solvent, the obrained solution is a perfect solution. 

 

[U5]The relation between the limiting viscosity number and the polymer molecular mass is described 

by Mark-Kuhn-Houvink-Sakurada equation: 

[η] = 𝐾𝑀𝑐            (12) 

 

where K, c – constants depending on the type of polymer and solvent, with the value of c increasing 

as the solubility of the polymer increases. The constant c assumes values in the range of 0.5 to 0.8 

for flexible chains and close to 1 for stiffened chains forming bundles impenetrable to the solvent.  

 

To calculate the molar mass from equation (12), a [] value must be initially determined. However, 

an unambiguous determination of the limit in equation (5) is not possible unless the general 

relationship between the viscosity number and the concentration of the polymer is known. The 

Flory-Huggins theory results in a relationship called the Huggins equation: 

η−η0

η0 ρ𝑝
= [η] + 𝐴ρ𝑝 + 𝐵ρ𝑝

2 + 𝐶ρ𝑝
3 + ⋯                (16) 

 

where A, B, C... constants depending on the type of polymer and solvent. The individual components 

of equation (16) correspond to the influence on the viscosity of the system: the presence of single 

polymer molecules, the presence of aggregates composed of two polymer molecules, etc. Assuming 



that viscosity measurements are made for diluted polymer solutions (in which case the probability of 

interactions between polymer molecules decreases very quickly together with the number of 

molecules interacting with each other) you can truncate all terms of the sum except the first two to 

obtain a linear equation of a straight line: 

 

η−η0

η0 ρ𝑝
= [η] + 𝐴ρ𝑝 = [η] + 𝑘′[η]2ρ𝑝         (17) 

 

where k –  Huggins coefficient taking a value close to 0.6 for solutions  and lower when   0,5 . 

 

One of the viscosity measurement methods is the so-called capillary method, which consists in 

measuring the flow time of a liquid through a narrow tube (capillary). In practice, the volume of 

liquid that has flowed through the capillary in time t is measured. The viscosity number can be 

determined from relative measurements, i.e. by performing analogous measurements in relation to 

the tested and standard liquid: 

 

η−η0

η0 ρ𝑝
=

ρ𝑡−ρ0𝑡0

ρ0𝑡0ρ𝑝
         (21) 

 

(indices 0 refer to the solvent). As we assumed above, we only consider dilute solutions of the 

polymer, so   0, and equation (21) can be written as: 

 

  

η−η0

η0 ρ𝑝
=

(t/t0)−1

ρ𝑝
        (22) 

 

 

When designing viscosity measurements to determine the molar mass of a polymer, it should be 

remembered that the considerations carried out above refer to laminar flow and that solutions of 

macromolecules are non-Newtonian fluids. Measurements using a capillary viscometer give correct 

results if the flow rate (and therefore the shear stress causing deformation of the polymer coil, 

which in turn changes the viscosity of the solution) is not too high. Practice shows that this condition 

is met with a flow time of 3 - 5 minutes from a typical Ubbelohde viscometer. 

 

Experimental 

The aim of the exercise is to determine the viscosimetric average molar mass of a selected polymer 

 



Preliminary steps 

• Turn on the ultrathermostat and set the temperature to 25 °C.  

o Remember to ensure the supply of cold tap water to the thermostat 

o The cold water tap should be turned on gently - so that no bulge appears on the 

inlet hose 

• Filter the appropriate amount of the starting poly-(vinyl alcohol) solution and prepare 

solutions with concentrations 1,0010–2, 0,8010–2, 0,6010–2, 0,4010–2 and 0,2010–2 g/cm3. 

• Rinse the viscometer (fig. 2) with distilled water: 

o pour water into arm A,  

o by plugging arm B, draw liquid into arm C using the pump 

o when the water drains from arm C, remove it using a hose inserted into arm A and 

connected to the water pump  

o repeat rinsing several times. 

 

Rys. 2. Ubbelohde viscosimeter 

 

Viscosity measurements  

Viscosity measurements should be carried out successively for the solvent (distilled water) and poly-

(vinyl alcohol) solutions of increasing concentrations.  

Between measurements, the viscometer should be rinsed with the next test solution in a manner 

analogous to the initial washing with water. 

• Introduce the tested liquid into the A arm of the viscometer so that its level is between the 

lines 3-3 on the A arm of the viscometer 

• Using the pump, draw the liquid up to the tank D (at the same time blocking the outlet of 

the arm B). 



• Disconnect the water pump and observe the descent of the meniscus. 

• Measure the meniscus descent time from line 1 to line 2. 

• Perform the measurement 3 times. Record the results in table 1 

• If successive results for a given concentration decrease, it means that the tested liquid has 

not yet reached the set temperature. Then wait a few minutes and repeat the 

measurements. 

• After the measurements, remove the solution from the viscometer using a water pump, 

rinse the viscometer several times with distilled water and leave it filled with water. 

 

Tabela 1. Wyniki 

Solution concentration 

p [g/cm3] 
Liquid flow time [s] 

Mean liquid flow time 

[s] 

Viscosity number 

[cm3/g] 

0 

..................... 

..................... 

..................... 

.....................  – 

0,2010–3 

..................... 

..................... 

..................... 

.....................  ..................... 

…    

 

 

 

Calculations 

• On the basis of the obtained experimental results, calculate the average outflow time of 

each of the tested liquids 

• Basing on equation (22) calculate the viscosity number ( (− 0 )/0p ) 

• Plot the dependency (− 0 )/0p = f(p) 

• Using the least squares method, determine the parameters of the equation of the straight 

line described by equation (17) 

• From equation (12) calculate the average molar mass of the tested polymer, assuming the 

following parameters: K = 2,010–2 cm3/g and c = 0,76 determined for the poly-(vinyl alcohol) 

- water system at 25 °C.  

• Based on the value of the Huggins coefficient (k) estimate the value range of the Flory 

interaction parameter (). 

 


